
Postprint

A Spectrum of Entropy-Based Precision and Recall
Measurements Between Partially Matching

Designed and Observed Processes

Anna Kalenkova and Artem Polyvyanyy

School of Computing and Information Systems
The University of Melbourne, Parkville, VIC, 3010, Australia

anna.kalenkova@unimelb.edu.au; artem.polyvyanyy@unimelb.edu.au

Abstract. Modern software systems are often built using service-oriented princi-
ples. Atomic components, be that web- or microservices, allow constructing flex-
ible and loosely coupled systems. In such systems, services are building blocks
orchestrated by business processes the system supports. Due to the complexity
and heterogeneity of industrial software systems, implemented processes may
deviate from those initially designed. In this paper, we propose a spectrum of
conformance measurements. The spectrum results from a generalization of the
recently introduced entropy-based approaches for measuring precision and re-
call between observed process executions and designed process models. The new
generalized measures of precision and recall inherit the desired for this class of
measures properties and provide analysts with flexible control over the sensitivity
for identifying commonalities and discrepancies in the compared processes and
performance of the techniques. The reported evaluation based on our implemen-
tation of the measures over real-world event logs and automatically discovered
models confirms the feasibility of using the approach in industrial settings.

1 Introduction
In a service-oriented architecture (SOA), business processes can be implemented as
compositions of loosely coupled services that interact to achieve concrete business
goals [10]. The historical data on executions of such processes are often recorded in
event logs. These logs can be subsequently analyzed to discover, check, and improve
service compositions [1] using process mining techniques. Process mining combines
studies of inferences from data in data mining and machine learning with process mod-
eling and analysis to tackle the problems of discovering, monitoring, and improving
real-world processes [2]. One of the core problems in process mining is conformance
checking [5], which studies relationships between processes recorded in an event log
and described by a process model to characterize and/or measure commonalities and
discrepancies between the observed real-world and designed processes. Two core mea-
sures in conformance checking are precision and recall. A precise process model should
not allow for behavior unrelated to what was seen in the event log, while a model with
good recall should allow for the behavior seen in the event log.

In our previous work, we devised two approaches for measuring recall and precision
between process models and event logs [21,19] founded on the notion of topological en-
tropy [6] of the behaviors, i.e., collections of traces, that they describe. The measures

https://orcid.org/0000-0002-5088-7602
https://orcid.org/0000-0002-7672-1643

2 Anna Kalenkova and Artem Polyvyanyy

presented in [21] have been recently recognized in [23] as the only recall and precision
measures, among the evaluated state-of-the-art measures, that satisfy all the desired
properties. For example, they are deterministic, depend only on the underlying behav-
iors and not on their representations, and are monotone, i.e., the more common behavior
the model and log have, the greater the recall and precision values are. These measures
can be computed for behaviors that describe arbitrary, including infinite, collections of
traces. However, they rely on the exact matching of traces, i.e., two different traces are
always treated as totally dissimilar, even if they differ only in a single task. In [19], we
extended the measures to account for partially matching traces. Instead of measuring
the original collections of traces, the new measures quantify and compare the “diluted”
behaviors, where the diluted version of a behavior consists of all the traces obtained
from original traces by skipping an arbitrary number of tasks; note that once a task is
skipped the order of the remaining tasks in the resulting trace does not change. These
new measures inherit the properties of the original measures and enjoy some further
properties specific to the partial matching of traces. For example, the more common
subtraces the model and log describe, the greater the recall and precision values are.

The two approaches for measuring recall and precision presented in [21,19] address
two extremes, i.e., no support for partial matching of traces and ability to detect and
quantify any partial similarity between traces. Such extreme approaches are doomed
for limitations. The former approach may overlook the commonalities in traces, while
the latter may miss the discrepancies. This calls for a compromise approach.

In this paper, we present a novel technique for measuring precision and recall be-
tween two (not necessarily finite) collections of partially matching traces that can be
configured as to when two different traces should be considered similar. The config-
uration consists of two non-negative integers that specify the maximum numbers of
tasks that can be skipped in traces in each of the two compared collections to arrive at
the same trace and, consequently, accept the compared traces as similar. For example,
traces 〈a, b, c〉 and 〈b, d, c, e〉 are dissimilar if one is allowed to skip only one task in
each trace. However, they can be accepted as similar if one is allowed to skip two tasks
in the latter trace. Indeed, one arrives at the trace 〈b,c〉 by skipping task a in the former
trace and tasks d and e in the latter trace. Hence, two traces are said to be similar if
they have a common subtrace that can be constructed by skipping up to the configured
number of tasks in each trace. Such common subtrace captures the common behavior
of the compared traces. The technique then proceeds by measuring the amount of all
common subtraces in both collections as per the supplied configuration.

The new technique results in a discrete spectrum of recall and precision measure-
ments induced by all the configurations in the Cartesian square of the natural numbers
(N0×N0). In this spectrum, the (k,m) configuration suggests that up to k and m skips
are allowed in the traces of log and model, respectively. The recall and precision mea-
sures for the (0, 0) configuration correspond to the exact matching measures from [21].
Using a formal proof, we show that measures for the (k,m) configurations approach
the partial matching measures from [19] when k,m → ∞, allowing for a gradual ad-
justment of the analysis between the two extremes.

Process analysts can rely on our new technique to (in a flexible way) adjust the
“sensitivity” of the measured recall and precision values to mismatches in the compared

A Spectrum of Entropy-Based Precision and Recall Measurements 3

submit
(s)

approve
(a)

validate
(v)

cancel
(c)

notify
(n)

Fig. 1: A BPMN model of a loan application process.

behaviors. Such an adjustment may, for instance, be guided by domain knowledge. An
analyst may know that logs are recorded with noise, e.g., a sequence of initialization
tasks at the start of each trace, and, thus, adjust the allowed skips in log traces accord-
ingly. In addition, the new measures demonstrate good runtime characteristics for the
practically relevant range of configurations. The most computationally demanding step
of the partially matching approach from [19] is the construction of a deterministic ver-
sion of the automaton that encodes the completely diluted version of the original behav-
ior. This step has exponential worst-case time complexity and, unfortunately, close-to-
worst cases manifest often for industrial datasets [19]. However, as confirmed through
our evaluations, for configurations (x, y), where x, y ≤ 10, the worst-case complexity
manifests only for sub-problems of small sizes, or not at all.

Section 2 motivates the problem addressed in this paper and demonstrates our ap-
proach for solving the problem by means of an intuitive example. Next, Section 3 in-
troduces the basic notions used in the discussions of the subsequent sections. Then,
Section 4 presents our approach and discusses several its properties. Section 5 presents
the results of our evaluations of the new measures. Section 6 positions our work among
the state-of-the-art results in conformance checking. Section 7 concludes the paper.

2 Motivating Example

Consider the example loan application process in Fig. 1. First, the client submits an
application. Then, the submitted application is reviewed by a bank analyst and ei-
ther approved or canceled. If the application is approved, it is then validated. In both
cases, the client is eventually notified. The BPMN model in Fig. 1 describes the ex-
pected process behavior. This behavior can be described by the set of traces M =
{〈s, a, v ,n〉, 〈s, c,n〉}, which contains the two traces that the model supports.1

Suppose that the corresponding event log L contains only one trace t = 〈s, a,
n〉. Then, the model and log have no common traces, i.e., M ∩ L = ∅. Consequently,
precision and recall measures founded on the exact matching of traces, e.g., the entropy-
based approach presented in [21], are equal to zero, suggesting no similarity between
the behaviors of the model and log. Despite different, the traces in M and L show some
similarity. For example, it holds that t and traces in M contain subtrace 〈s,n〉.

The partial matching approach from [19] addresses the above issue by comparing
collections of diluted traces. For example, the diluted versions of L and M are {〈s, a,
n〉, 〈s, a〉, 〈s, n〉, 〈a, n〉, 〈s〉, 〈a〉, 〈n〉, 〈〉} and {〈s, a, v, n〉, 〈a, v, n〉, 〈s, v, n〉, 〈s, a, n〉,
〈s, a, v〉, 〈s, c, n〉, 〈v, n〉, 〈a, n〉, 〈a, v〉, 〈s, n〉, 〈s, v〉, 〈s, a〉, 〈s, c〉, 〈c, n〉, 〈s〉, 〈a〉, 〈v〉,
〈n〉, 〈c〉, 〈〉}, where 〈〉 is the empty trace. We denote the former set and the latter set as

1 We use short task names to specify traces, while the corresponding full names are in Fig. 1.

4 Anna Kalenkova and Artem Polyvyanyy

L(0) L(1) L(2) L(3)

M (0) 0.000 0.000 0.000 0.000

M (1) 1.000 0.793 0.568 0.464

M (2) 1.000 1.000 0.908 0.741

M (3) 1.000 1.000 1.000 1.000

(a) Recall

L(0) L(1) L(2) L(3)

M (0) 0.000 0.000 0.000 0.000

M (1) 0.549 0.670 0.670 0.670

M (2) 0.382 0.589 0.745 0.745

M (3) 0.299 0.459 0.642 0.785

(b) Precision

Table 1: The spectrum of the entropy-based precision and recall measurements between
the model in Fig. 1 that describes set of traces M = {〈s,a,v,n〉,〈s,c,n〉} and event log
L = {〈s,a,n〉} calculated for different numbers of skipped tasks in traces of M and L.

L∞ andM∞, respectively. The diluted traces can be used to identify commonalities and
discrepancies between the original traces. For example, it holds that 〈s,n〉 ∈ L∞∩M∞
and 〈s,c,n〉 ∈M∞ \ L∞. The partial matching precision and recall measures between
a model and log quantify the commonalities and discrepancies in their diluted traces.
Since L∞ ⊂ M∞, such diluted recall is equal to 1.0, suggesting that the model allows
for the behavior seen in the log perfectly. As M∞ 6⊆ L∞, such diluted precision is not
perfect. The particular precision value obtained using the technique from [19] is 0.785;
note that the absolute value is of less interest here as these are the relations between the
measurements that allow comparing different behaviors.2

The above examples highlight the limitations of the two extreme approaches men-
tioned in the Introduction. The approach founded on the exact matching of traces over-
looks the existing partial commonalities in traces, while the approach that relies on the
arbitrary skips of tasks in traces misses to identify the discrepancies, cf. recall of 1.0.

Consider two sets L(1) and M (1) with all the traces constructed from the traces in
L and M , respectively, by skipping at most one task in a trace from the original set,
i.e., L(1) = {〈s, a, n〉, 〈a, n〉, 〈s, n〉, 〈s, a〉} and M (1) = {〈s, a, v, n〉, 〈a, v,
n〉, 〈s, v, n〉, 〈s, a, n〉, 〈s, a, v〉, 〈s, c, n〉, 〈c, n〉, 〈s, n〉, 〈s, c〉}. It holds that
L(1) ∩M (1) = {〈s,a,n〉, 〈s,n〉}, L(1) \M (1) 6= ∅, and M (1) \ L(1) 6= ∅. Hence, sets
L(1) and M (1) contain information about commonalities and discrepancies of log and
model. The entropy-based recall and precision computed based on the traces in L(1) and
M (1) are equal to 0.793 and 0.670, respectively, and, thus, confirm that the behaviors
are neither completely different, nor are in the subsumption relation. Again, the absolute
values of precision and recall are irrelevant, as they indeed satisfy the monotonicity
properties discussed later. Importantly, these measure neither suggest perfect match nor
the complete dissimilarity of the compared behaviors.

Tables 1a and 1b demonstrate the spectrum of precision and recall values calculated
for the traces in L and M . Given a set of traces X , by X(k), k ∈ N0, we denote the
set of all traces obtained from the traces in X by skipping up to k arbitrary tasks in the
original traces. Thus, it holds that M (0) = M and L(0) = L. For this example, it also
holds that M (m) =M∞ and L(m) =M∞, where m ≥ 3.

Note that the recall values do not decrease when more skips are allowed in the
model traces, i.e., recall (k ,m)(M,L) ≤ recall (k+1 ,m)(M,L), k,m ∈ N0; here, k and

2 In general, precision and recall measure of one suggest perfect conformance, while the values
of zero suggest no behavioral similarities between the compared model and log.

A Spectrum of Entropy-Based Precision and Recall Measurements 5

m refer to the numbers of allowed skips in M and L, respectively, used to compute the
conformance values (refer to Section 4 for details). Indeed, by extending the behavior of
the model more, we can use it to cover more of the traces in the log. On the other hand,
precision values do not decrease when more skips are allowed in the log traces, i.e.,
prec(k ,m)(M,L) ≤ prec(k ,m+1)(M,L), k,m ∈ N0, as by extending the behavior of
the log we can use it to cover more behavior of the model. These properties of precision
and recall measures are formally proved in Section 4.3.

3 Basic Notions
This section introduces basic notions and definitions used in the remainder of the paper.

3.1 Sequences, Languages, and Event Logs
Let X be a set of elements. The power set of X , denoted as P(X), is the set of
all subsets of X . By 〈x1, x2, . . . , xk〉, where x1, x2, . . . , xk ∈ X , k ∈ N, we de-
note a sequence of elements from X of length k. The empty sequence of zero length
is represented by 〈〉. By X∗, we denote the set of all finite sequences over X . A
concatenation of two sequences 〈x1, x2, . . . , xk〉 and 〈y1, y2, . . . , yl〉 is denoted by
〈x1, x2, . . . , xk〉 · 〈y1, y2, . . . , yl〉 and is the sequence 〈x1, x2, . . . , xk, y1, y2, . . . , yl〉.

Given a sequence x and a set K, by x|K , we denote a sequence obtained from x by
removing all elements of x that are not members of K without changing the order of
the remaining elements, e.g., it holds that 〈a, c, b, a, d, c〉|{c,d} = 〈c, d, c〉.

An alphabet is any nonempty finite set. The elements of an alphabet are its labels. A
language L over an alphabetΣ is a (not necessarily finite) set of sequences, or words, of
labels from Σ, i.e., L ⊆ Σ∗. By Cn(L), we denote the set of all words in L of length n.
By Ξ , we denote a universe of all possible observable labels, while τ , τ /∈ Ξ , denotes
a special silent label. Let L1 and L2 be two languages. Then, their concatenation is the
language L = {l1 · l2 | l1 ∈ L1, l2 ∈ L2}, denoted by L1 ◦L2. Given a language L, L∗

is the language defined by
⋃∞
n=0 L

n, where L0 = {〈〉}, Ln = Ln−1 ◦ L.
Let E be a finite nonempty set of tasks, or events. A finite language L ⊂ E∗ is an

event log and its words are called traces [2].

3.2 Finite Automata
A nondeterministic finite automaton (NFA) is a 5-tuple (Q,Λ, δ, q0, A), where Q is a
finite nonempty set of states, Λ ⊆ Ξ is a set of labels, δ : Q × (Λ ∪ {τ}) → P(Q) is
the transition function, q0 ∈ Q is the start state, and A ⊆ Q is the set of accept states.

An NFA induces a collection of computations. A computation of an NFA B =
(Q,Λ, δ, q0, A) is either the empty word or a word σ = 〈a1, . . . , an〉, n ∈ N, where
ai ∈ Λ ∪ {τ}, i ∈ [1 .. n], and exists a sequence of states 〈q0, q1, . . . , qn〉, such that for
every k ∈ [1 .. n] it holds that qk ∈ δ(qk−1, ak). We say that σ leads from q0 to qn. By
convention, the empty word leads to the start state. NFA B accepts a word w ∈ Λ∗ iff
exists a computation σ ∈ (Λ ∪ {τ})∗ that leads to one of its accept states and it holds
that w = σ|Λ. The language of B is denoted by lang(B) and is the set of all words B
accepts. We also say that B recognizes lang(B).

A deterministic finite automaton (DFA) is an NFA (Q,Λ, δ, q0, A), where for every
q ∈ Q it holds that δ(q, τ) = ∅, and for every q ∈ Q and every a ∈ Λ, |δ(q, a)| ≤ 1.
For a language L recognized by an NFA, exists a DFA that recognizes L [12].

6 Anna Kalenkova and Artem Polyvyanyy

A
s

B

a
C

D

v

c
E

n

1
open window

2
fill name

643 5

fill passport
 data close window

(b)

fill name

(a) A DFA that recognizes M .

A
s

B

a
C

D

v

c
E

n
A'

s
B' D'

a
E'

n

(b) A DFA that recognizes L.

Fig. 2: Two DFAs that recognize languages M and L.

Figs. 2a and 2b present DFAs that recognize, respectively, languages M and L dis-
cussed in Section 2. States are shown as circles, start states are marked with incoming
arrows, transitions are encoded as arcs, and accept states are shown with double border.

A DFA (Q,Λ, δ, q0, A) is ergodic if its underlying graph is strongly irreducible, i.e.,
for all (q, p) ∈ Q ×Q, q 6= p, there is a sequence of states 〈q1, . . . , qn〉 ∈ Q∗, n ∈ N,
such that q1 = q, qn = p, and for every k ∈ [1 .. n − 1] there exists λ ∈ Λ such that
qk+1 ∈ δ(qk, λ). A language L is regular iff there exists a DFA that recognizes L.
A regular language L is irreducible iff it is a language of an ergodic DFA [6].

3.3 Topological Entropy

Let Σ be an alphabet and let L ⊆ Σ∗ be an irreducible language over Σ. The topo-
logical entropy of L, which estimates the cardinality of L by measuring the ratio of the
number of distinct words in L to the length of these words, is given below [6]:

ent(L) = lim sup
n→∞

log |Cn(L)|
n

. (1)

The languages recognized by automata and event logs are regular; note that an event
log can be encoded as a DFA, cf. Fig. 2b. But, not all such languages are irreducible.

A
s

B

a
C

D

v

c
E

n
A'

s
B' D'

a
E'

n

A
s

B

a
C

D

v

c
E

n

χ

A
s

B

a C

D

v
c

E
n

τ

A'
s

B'

a C'

D'

v
c

E'
n

τ
τ τ

τ

A''
s

B''

a C''

D''

v
c

E''
n

τ
τ

τ τ
τ

0

1

c
3

a

v

4
v

6 7

s

a

2

n

n

n
n

v

c,v

n

n

A
s

B

a

C

D

v

c
E

n
A'

s
B' D'

a
E'

n

τ
τ τ

τ τ

τ τ τ

Fig. 3: A DFA that recognizes lan-
guage (M ◦ {〈χ〉})∗ ◦M .

Given a regular language L, in [21], the authors
proposed to compute the short-circuit topolog-
ical entropy of L, denoted by ent•(L), as the
topological entropy of the irreducible language
(L ◦ {〈χ〉})∗ ◦ L, χ /∈ Σ, i.e., ent•(L) =
ent((L◦{〈χ〉})∗ ◦L). Note that one can always
construct a DFA that recognizes (L◦{〈χ〉})∗◦L
from a DFAB that recognizesL by adding fresh
transitions in B that are labeled with χ and con-

nect the accept states of B with its start state. For example, the short-circuit topological
entropy of the language recognized by the automaton in Fig. 2a is equal to the topolog-
ical entropy of the language recognized by the automaton in Fig. 3.3

Finally, this result follows immediately from the definition of the short-circuit topo-
logical entropy and Lemma 4.7 in [21]:

Corollary 3.1 (Topological entropy). Let L1 and L2 be two regular languages.
1. If L1 = L2, then ent•(L1) = ent•(L2);
2. If L1 ⊂ L2, then ent•(L1) < ent•(L2).
3 The topological entropy of an ergodic DFA is given by the logarithm of the Perron-Frobenius

eigenvalue of its adjacency matrix [6].

A Spectrum of Entropy-Based Precision and Recall Measurements 7

4 Comparing Designed and Observed Processes

This section describes existing entropy-based conformance checking techniques and
proposes a new approach that can control the number of skipped tasks.

4.1 Existing Entropy-Based Conformance Checking Techniques

Conformance checking techniques [5] measure the discrepancies and commonalities
between the behaviors described in process models and event logs. Precision estimates
the share of the common model and log behavior with respect to the overall model
behavior, while recall assesses the share of the log behavior captured by the model.

The exact matching conformance checking approach for measuring precision and
recall proposed in [21] relates two regular languages of a process model (M) and event
log (L) with their intersection; note that the intersection ofM andL is also a regular lan-
guage [12]. The measurements of the behaviors encoded in these languages are carried
out using the short-circuit topological entropy. The entropy-based precision (prec) and
recall (recall) values between the model and log are then defined as shown below [21]:

prec(M,L) = ent•(M∩L)
ent•(M) , recall(M,L) = ent•(M∩L)

ent•(L) .

As follows from Corollary 3.1, for any two regular languagesM and L, it holds that
prec(M,L) and recall(M,L) values belong to the interval [0, 1]. In contrast to other
conformance checking techniques, this approach is trace monotone [23], i.e., the higher
the share of the model traces that are presented in the log, the higher the precision value,
and similarly, the higher the share of the log traces that are captured by the model, the
higher the recall value. As shown in Section 2, this approach can be too restrictive and
in case M ∩ L = ∅, prec(M,L) = recall(M,L) = 0.

The partial matching precision and recall measures described in [19] compare reg-
ular languages that allow for arbitrary skips within the model and log behaviors. First,
for regular languages M and L that encode the model behavior and the log behavior,
respectively, M∞ and L∞ are constructed. NFAs that recognize languages M∞ and
L∞ for the example behaviors discussed in Section 2 are shown in Fig. 4. Then, these
NFAs are converted to equivalent DFAs [12] and, finally, the precision and recall values
for these “diluted” languages are calculated:

prec(∞,∞)(M,L) = ent•(M∞∩L∞)
ent•(M∞) , recall (∞,∞)(M,L) = ent•(M∞∩L∞)

ent•(L∞) .

Such conformance checking technique assesses the share of the common log and
model behavior, including all the shared subtraces. In contrast to the original exact
matching approach, the partial matching technique is not restrictive. Moreover, it “di-
lutes” the initial languages by adding extra behavior that, in some cases, results in too
many matches, which hampers analysis. Recall that for the languages discussed in Sec-
tion 2, it holds that recall (∞,∞)(M,L) = 1.0, as L∞ ⊂ M∞, while recall(M,L) =
0.0, because M and L do not have common traces, i.e., M ∩ L = ∅.

8 Anna Kalenkova and Artem Polyvyanyy

A
s

B

a
C

D

v

c
E

n
A'

s
B' D'

a
E'

n

A
s

B

a
C

D

v

c
E

n

χ

A
s

B

a C

D

v
c

E
n

τ

A'
s

B'

a C'

D'

v
c

E'
n

τ
τ τ

τ

A''
s

B''

a C''

D''

v
c

E''
n

τ
τ

τ τ
τ

0

1

c
3

a

v

4
v

6 7

s

a

2

n

n

n
n

v

c,v

n

n

A
s

B

a

C

D

v

c
E

n
A'

s
B' D'

a
E'

n

τ
τ τ

τ τ

τ τ τ

(a) An NFA that recognizes language M∞.

A
s

B

a
C

D

v

c
E

n
A'

s
B' D'

a
E'

n

A
s

B

a
C

D

v

c
E

n

χ

A
s

B

a C

D

v
c

E
n

τ

A'
s

B'

a C'

D'

v
c

E'
n

τ
τ τ

τ

A''
s

B''

a C''

D''

v
c

E''
n

τ
τ

τ τ
τ

0

1

c
3

a

v

4
v

6 7

s

a

2

n

n

n
n

v

c,v

n

n

A
s

B

a

C

D

v

c
E

n
A'

s
B' D'

a
E'

n

τ
τ τ

τ τ

τ τ τ

(b) An NFA that recognizes language L∞.

Fig. 4: Two NFAs that recognize languages M∞ and L∞ discussed in Section 2.

4.2 k-Skips Conformance Checking

The primary task of the proposed technique is to assess the log and the model similari-
ties assuming that some predefined numbers of steps can be skipped. Suppose the event
log contains traces with additional steps not presented within the original model. In that
case, this approach can still consider these traces, because a limited number of skips
within the log is allowed. Similarly, the behavior of the model with a controlled number
of skips can match some of the event log traces that skip the model’s tasks.

Let M and L be two regular languages capturing the behavior of a process model
and event log, respectively. Suppose thatM (l) and L(k), where l, k ∈ N0, are languages
obtained from M and L by allowing up to l and k skips in the original traces of M and
L. Then, we define the precision and recall measures for these allowed skips as follows:

prec(l,k)(M,L) = ent•(M(l)∩L(k))
ent•(M(l))

, recall (l,k)(M,L) = ent•(M(l)∩L(k))
ent•(L(k))

.

Again, according to Corollary 3.1, these precision and recall values belong to the in-
terval [0, 1]. While the entropy calculation techniques [6,21] and the set operations over
regular languages [12] are well-defined, we still need to buildM (l) and L(k) languages.
Without loss of generality, we consider language L(k) and define it constructively using
Algorithm 1 by building a DFA that recognizes L(k).

Firstly, this algorithm constructs an NFA BNFA that recognizes language L(k). To
that end, k + 1 copies of the DFA that recognizes L and referred to as layers are added
to the NFA (Lines 1 and 5). The start state of BNFA is the start state of the first layer
(Layer 0). The transition function δ is considered as a relation (a set of pairs) in this
algorithm. As suggested in Line 10, for each transition (qi−1, a) of Layer i − 1, a
transition (qi−1, τ) leading to the only state in the set δ(qi, a), where qi−1 and qi are
copies of the same state at Layers i− 1 and i, respectively, is added.

The NFA constructed by Algorithm 1 for the language M (2), where M is the lan-
guage discussed in Section 2, is presented in Fig. 5a. This automaton contains three
layers connected by additional transitions labeled by τ . The layers of BNFA correspond
to the number of skips made. For instance, visiting a state at Layer 1 means that one
skip has been made in the computation and, hence, it is still possible to make one more
skip by visiting a state at Layer 2.

Once the NFA has been constructed, it is converted to an equivalent DFA using
the approach from [12] (Line 14). Fig. 5b shows the minimal DFA constructed from
the NFA in Fig. 5a. The states of this DFA correspond to sets of the NFA states, i.e.,
S0 = {A, B′, C ′′, D′′}, S1 = {D,D′, E′, E′′}, S2 = {E, E′, E′′}, S3 = {C ′, D′′},
S4 = {D′′}, S5 = {B, C ′, D′, D′′, E′′}, and S6 = {C,D′, E′′}. NFA states A′, A′′,
and B′′ (highlighted in gray in Fig. 5a) are dead, because they cannot be reached from
the start state A and, thus, are not represented in the resulting DFA.

A Spectrum of Entropy-Based Precision and Recall Measurements 9

Algorithm 1: Construct a DFA that recognizes language L(k)

Input: A DFA B0 = (Q0, Λ, δ0, q00 , A
0) that recognizes language L and k ∈ N.

Output: A DFA BDFA that recognizes language L(k).

1 Q← Q0; δ ← δ0; q0 ← q00 ; A← A0;
2 BNFA ← (Q,Λ, δ, q0, A); /* Initialize an NFA BNFA */
3 for i← 1 to k do
4 Qi ← Q0; δi ← δ0; Ai ← A0; /* Clone states and transitions */

5 Q← Q ∪Qi; δ ← δ ∪ δi; A← A ∪Ai; /* Add next layer */
6 /* Connect layers */

7 foreach qi−1 ∈ Qi−1, a ∈ Λ do
8 if δ(qi−1, a) 6= ∅ then
9 /* qi−1, qi are copies of the same state from Q0

*/

10 δ ← δ ∪ {((qi−1, τ), δ(qi, a))};
11 end
12 end
13 end
14 BDFA ← Determinize(BNFA);
15 return BDFA;

4.3 Formal Properties

According to Algorithm 1, for any regular language L, it holds that L(0) = L, and for
any k ≥ 1, by construction, it holds that L(k−1) ⊆ L(k). From the monotonicity of
ent• measure, refer to Corollary 3.1, it holds that ent•(L(k−1)) ≤ ent•(L(k)), for any
k ≥ 1. This leads to the following two propositions.

Proposition 4.1. Let M and L be two regular languages.
Then, it holds that prec(l,k)(M,L) ≤ prec(l,k+1)(M,L), where l, k ∈ N0.

Proof. By definition, it holds that prec(l,k)(M,L) = ent•(M(l)∩L(k))/ent•(M(l)) and
prec(l,k+1)(M,L) = ent•(M(l)∩L(k+1))/ent•(M(l)). Since it holds that (M (l) ∩ L(k)) ⊆
(M (l) ∩ L(k+1)), then ent•(M(l)∩L(k))/ent•(M(l)) ≤ ent•(M(l)∩L(k+1))/ent•(M(l)). ut

Proposition 4.2. Let M and L be two regular languages.
Then, it holds that recall (l,k)(M,L) ≤ recall (l+1 ,k)(M,L), where l, k ∈ N0

The proof of Proposition 4.2 is similar to that one of Proposition 4.1.
Propositions 4.1 and 4.2 confirm the monotonicity of the k-skips measures. The

next result states that the k-skips measures tend to the partial measure extreme as k
approaches the infinity.

Theorem 4.1. Let L be a regular language over Σ.
Then, it holds that lim

k→∞
ent•(L(k)) = ent•(L∞).

Proof. By definition, limit superior of {log |Cn((L
∞◦{〈χ〉})∗◦L∞)|/n}, χ /∈ Σ, when

n tends to ∞, is equal to ent•(L∞). Let xn = log |Cn((L
∞◦{〈χ〉})∗◦L∞)|/n. Suppose

that {xnl
}∞l=1, where n1 < n2 < . . . , is a subsequence, such that xnl

→ ent•(L∞), as

10 Anna Kalenkova and Artem Polyvyanyy

A
s

B

a
C

D

v

c
E

n
A'

s
B' D'

a
E'

n

A
s

B

a
C

D

v

c
E

n

χ

A
s

B

a C

D

v
c

E
n

τ

A'
s

B'

a C'

D'

v
c

E'
n

τ
τ τ

τ

A''
s

B''

a C''

D''

v
c

E''
n

τ
τ

τ τ
τ

0

1

c
3

a

v

4
v

6 7

s

a

2

n
n

n
n

v

c,v

n

n

A
s

B

a

C

D

v

c
E

n
A'

s
B' D'

a
E'

n

τ
τ τ

τ τ

τ τ τ

Layer 0

Layer 1

Layer 2

(a) An NFA that recognizes languageM (2).

A
s

B

a
C

D

v

c
E

n
A'

s
B' D'

a
E'

n

A
s

B

a
C

D

v

c
E

n

χ

A
s

B

a C

D

v
c

E
n

τ

A'
s

B'

a C'

D'

v
c

E'
n

τ
τ τ

τ

A''
s

B''

a C''

D''

v
c

E''
n

τ
τ

τ τ
τ

S0

S1

c
S3

a

v

S4

v

S5 S6

s

a

S2

n
n

n
n

v

c,v

n

n

A
s

B

a

C

D

v

c
E

n
A'

s
B' D'

a
E'

n

τ
τ τ

τ τ

τ τ τ

Layer 0

Layer 1

Layer 2

(b) A DFA that recognizes language M (2).

Fig. 5: Two automata that recognize languages M (2) and L(2).

l → ∞. By the definition of limit, ∀ ε > 0∃N(ε) ∀ l ≥ N , where N is a number
that depends on ε, it holds that |xnl

− ent•(L∞)| < ε. Consider a large enough K(l)
such that ∀ k > K, |Cnl

((L(k) ◦ {〈χ〉})∗ ◦ L(k))| = |Cnl
((L∞ ◦ {〈χ〉})∗ ◦ L∞)|.

Let ykn be a sequence log |Cn((L
(k)◦{〈χ〉})∗◦L(k))|/n. Then, ∀ ε > 0 ∃N(ε) ∀l ≥ N holds

that ∃K(l), such that ∀k > K : |yknl
− ent•(L∞)| < ε. Since yknl

→ ent•(L(k)), as
l→∞, it holds that ∀ε > 0 ∃K(ε), such that ∀k > K : |ent•(L(k))−ent•(L∞)| < ε.
Therefore, lim

k→∞
ent•(L(k)) = ent•(L∞). ut

Similarly to Theorem 4.1, the following theorem can be formulated and proved.

Theorem 4.2. Let M and L be two regular languages over Σ. Then, it holds that
lim
k→∞

ent•(M (k)∩L)=ent•(M∞∩L) and lim
k→∞

ent•(M (k)∩L(k))=ent•(M∞∩L∞).

The next corollary follows immediately from Theorems 4.1 and 4.2.

Corollary 4.1. Let M and L be two regular languages over Σ. Then, it holds that:

– lim
k,l→∞

prec(l,k)(M,L) = prec(∞,∞)(M,L), lim
k,l→∞

recall (l,k)(M,L) = recall (∞,∞)(M,L);

– lim
l→∞

prec(l,k)(M,L) = prec(∞,k)(M,L), lim
l→∞

recall (l,k)(M,L) = recall (∞,k)(M,L); and

– lim
k→∞

prec(l,k)(M,L) = prec(l,∞)(M,L), lim
k→∞

recall (l,k)(M,L) = recall (l,∞)(M,L).

In practice, the results of Corollary 4.1 allow balancing smoothly between the two
extremes of the exact and partial measures. Starting with the exact measurements when
k = 0 and l = 0, we can gradually approach the partial measurements by increasing
parameters k and l. As discussed in [12], the number of states can grow exponentially
when an NFA is converted to a DFA that recognizes the same language. The following
theorem defines a condition under which the number of states is polynomially bounded.

Theorem 4.3. LetB = (Q,Λ, δ, q0, A) be a DFA and let k ∈ N such that lang(B) = L
and for any symbol a ∈ Λ, any state q ∈ Q, and any two (possibly empty) sequences
of transitions of length less than or equal to k, one leading from q to q′ ∈ Q and the
other leading from q to q′′ ∈ Q and enabling a in q′ and q′′, i.e., δ(q′, a) 6= ∅ and
δ(q′′, a) 6= ∅, it holds that q′ = q′′. Then, there exists a DFA Bk = (Qk, Λ, δk, qk0 , A

k)
such that lang(Bk) = L(k) and |Qk| ≤ (k + 1) · |Q|.

A Spectrum of Entropy-Based Precision and Recall Measurements 11

Proof. Consider NFA BNFA constructed from B at lines 1–13 of Algorithm 1. Let
closure(q) denote the set of all states that can be reached from a state q of BNFA via
τ -transitions, including q. By induction, we prove that each state of the resulting DFA
Bk obtained by determinization [12] of BNFA is a closure of one state from BNFA.
Basis of induction: According to the determinization algorithm [12], qk0 = closure(q0),
and hence, we say qk0 corresponds to q0. Step of induction: Let qk ∈ Qk be a closure
of a state q̂1, i.e., qk = {q̂1, q̂2, q̂3, . . . , q̂m}, where q̂1, q̂2, q̂3, . . . , q̂m are some states of
BNFA. By construction (see Algorithm 1), states q̂1, q̂2, q̂3, . . . , q̂m may belong to dif-
ferent layers of the NFA and for each state q̂i, i ∈ [1 ..m], there exists a (possibly empty)
sequence of τ -transitions with a maximum length of k leading from q̂1 to q̂i. Again,
by construction, states q̂1, q̂2, q̂3, . . . , q̂m correspond to some states q1, q2, q3, . . . , ql,
l ≤ m, of B and each sequence of τ -transitions with a maximum length of k in the
NFA corresponds to some sequence of transitions with a maximum length of k in B.
Suppose that for some q̂j , j ∈ [1 ..m], exists b ∈ Λ such that δ(q̂j , b) 6= ∅; transition
δ(q̂j , b) corresponds to a DFA transition and can contain not more than one NFA state.
Let δ(q̂j , b) = {q̂∗}, where q̂∗ is a state of the NFA. Then, for any q̂p, p ∈ [1 ..m],
p 6= j, it holds that δ(q̂, b) = ∅; otherwise, there is more than one transition labeled by
b within corresponding sequences of states belonging to {q1, q2, q3, . . . , ql} in DFA B,
and since the length of these sequences is less or equal to k, we obtain a contradiction
to the conditions of the theorem. Hence, according to the determinization algorithm
in [12], δk(qk, b) = closure(q̂∗), i.e., the next state of Bk is a closure of a state from
BNFA. Thus, each state of Bk corresponds to a closure of some state of BNFA. Since
BNFA has at most (k + 1) · |Q| states, it holds that |Qk| ≤ (k + 1) · |Q|. ut

This theorem proves that if the original DFA that recognizes language L does not
contain occurrences of the same symbol within k-length sequences of transitions, the
size of the DFA recognizing language L(k) is bounded linearly by the size of the NFA
constructed by Algorithm 1. Real-life logs and models can contain task repetitions and
this, as shown in [12], can potentially lead to the state space explosion in DFAs model-
ing event log languages with skips. However, as shown in the next section, such cases
manifest rarely in practice and pose practical limitations only for large values of k.

5 Evaluation
This section presents results of applying our approach to computing the spectrum of
entropy-based precision and recall measurements on the real-world event data. All the
experiments were carried out using Intel Xeon Gold 6154 CPU @3.00 GHz with 128
GB RAM and can be reproduced with our publicly available tool [18].

To perform the experiments, we used logs of real-world IT-systems made publicly
available by the IEEE Task Force on Process Mining.4 Prior to the analysis, we filtered
out infrequent events that appear in less than 80% of traces using the “filter log using
simple heuristics” Process Mining (ProM) plug-in [9]. Hence, we used the same logs
as in [19]. Table 2 summarizes characteristics of the filtered logs by showing the total
number of unique traces (# Traces), size of the alphabet (# Ev. Classes), and the total
number of event occurrences (# Events). Next, we applied the Inductive miner [13]

4 https://data.4tu.nl/repository/collection:event logs real.

https://data.4tu.nl/repository/collection:event_logs_real

12 Anna Kalenkova and Artem Polyvyanyy

to automatically construct Petri nets from the logs. For each Petri net, its reachability
graph, represented as a DFA, was constructed. The event logs were also encoded as
DFAs. Finally, these DFAs and Algorithm 1 were used to compute the precision and
recall values presented in Section 4.2 for different parameters.

Table 2: Characteristics of event logs.

No. Event log # Traces # Ev. Classes # Events

1 BPIC’12 2,320 18 164,144
2 BPIC’13 closed 111 3 5,179
3 BPIC’13 open 45 3 1,403
4 BPIC’13 incid. 832 4 44,607
5 WABO 1 709 64 25,823
6 WABO 2 449 85 20,420
7 WABO 3 756 56 28,482
8 WABO 4 580 61 21,848
9 WABO 5 704 68 29,513

Table 3 presents the numbers of
states in DFAs that encode the behav-
iors of process models (M (k)), event logs
(L(k)), and their intersections (M (k) ∩
L(k)) for different values of k, k ∈
{0, 1, 2, 5, 10, 20,∞}, and the times (in
milliseconds) taken to construct the
DFAs; we used the technique from [19]
to construct DFAs with arbitrary skips
(k =∞). If no DFA was constructed (us-
ing 128Gb of memory), the correspond-
ing values are not provided. The results
show that the numbers of states and the
times start to grow as k increases (up to
k of 5 for event logs 2 and 3, and k ∈ {10, 20} for the other logs), and then drop.
The non-linear growth of states with increasing k (see, for example, event log 4 and
the corresponding log DFAs for k = 5 and k = 10) can be explained by the fact that
for large k, events are more likely to be repeated in k-length subsequences and, thus,
Theorem 4.3 does not apply. The decreases in the numbers of states relate to the cases
when allowing too much behavior leads to DFAs with less number of states; indeed, the
fully permissive flower model that recognizes all possible traces over a given alphabet
contains only one state [2]. Note that all the results for parameters k ≤ 10 were com-
puted and are suitable for practical applications. Indeed, the precision and recall values
computed for up to ten skips are sufficient for many practical scenarios. Note also that
all the (not shown in the table) eigenvalues of the corresponding adjacency matrices
were computed fast, always under two minutes and often within couple of seconds.

Table 4 presents (parts of) the corresponding spectrums of the precision and recall
values. Using such spectrums, one can smoothly balance between the two extremes of
the exact matching (k = 0) and the partial matching (k =∞). Note that the values also
confirm the result of Theorem 4.2, which states that prec(k,k) and recall (k,k) approach
prec(∞,∞) and recall (∞,∞) when k approaches infinity.

6 Related Work
Over the past decade, a plethora of conformance checking methods [5] have been de-
veloped and proven to be effective in analyzing real-world process data. These methods
vary in types of process models and event logs being analyzed, as well as in types of
results being produced. Conformance checking techniques can produce a single num-
ber assessing the behavioral similarities of process models and event logs (quantitative
conformance checking) or can provide rich diagnostic information highlighting devia-
tions in model and log behaviors (qualitative conformance checking). In this paper, we
develop and investigate a novel quantitative conformance checking technique.

A Spectrum of Entropy-Based Precision and Recall Measurements 13

Table 3: Numbers of states in DFAs and construction times (in milliseconds).
Event DFA # States / Time (in milliseconds)

log k = 0 k = 1 k = 2 k = 5 k = 10 k = 20 k =∞

L(k) 9,102 / 2,129 18,283 / 31,936 / 98,523 / 367,203 / 1,360,759 / 90,557 /
24,208 48,462 125,806 330,671 1,636,200 95,370

1 M (k) ∩ L(k) 9,102 / 15 18,283 / 31,936 / 98,523 / 367,203 / 1,360,759 / 90,557 /
31 51 230 949 4,477 215

M (k) 4 / 4 4 / 8 3 / 12 3 / 4 3 / 7 3 / 20 3 / 4
L(k) 156 / 15 381 / 47 696 / 74 1,185 / 172 1,213 / 399 216 / 1,000 216 / 44

2 M (k) ∩ L(k) 16 / 27 83 / 31 230 / 39 936 / 63 1,274 / 82 216 / 4 216 / 0
M (k) 3 / 4 7 / 4 9 / 8 15 / 8 25 / 8 45 / 15 1 / 8
L(k) 33 / 4 51 / 7 62 / 12 69 / 19 17 / 35 17 / 63 17 / 7

3 M (k) ∩ L(k) 33 / 0 51 / 0 62 / 0 69 / 4 17 / 4 17 / 0 17 / 0
M (k) 3 / 7 5 / 4 7 / 8 13 / 8 23 / 8 43 / 15 1 / 8
L(k) 2,032 / 121 7,451 / 23,733 / 417,814 / 11,331,602 / 24,336 /

1,324 2,906 37,495 1,599,223 1,379,026
4 M (k) ∩ L(k) 6 / 137 3,736 / 19,332 / 440,216 / 11,635,787 / – 24,336 /

324 1,199 33,502 1,632,042 39
M (k) 5 / 8 9 / 4 13 / 4 25 / 11 45 / 12 1 / 8
L(k) 10,784 / 2,277 25,259 / 48,686 / 254,067 / 2,020,868 /

33,135 64,729 202,598 1,230,863
5 M (k) ∩ L(k) 10,784 / 19 25,259 / 48,686 / 254,067 / 2,020,868 / – –

51 125 1,344 18,595
M (k) 13 / 59 24 / 82 32 / 71 56 / 102 96 / 118
L(k) 12,316 / 2,110 26,892 / 46,613 / 182,837 / 1,308,926 /

44,344 81,855 217,852 1,188,256
6 M (k) ∩ L(k) 6,482 / 1,277 23,576 / 47,467 / 218,291 / 1,308,926 / – –

8,098 27,151 174,728 11,282
M (k) 15 / 50 27 / 63 37 / 54 73 / 63 133 / 148
L(k) 9,590 / 4,044 23,647 / 47,422 / 275,803 / 2,040,917 / 1,665,113 /

31,585 56,458 210,160 1,931,814 1,370,908
7 M (k) ∩ L(k) 8,140 / 797 23,747 / 48,265 / 275,969 / 2,040,917 / – 1,665,113 /

12,993 37,546 263,653 21,566 18,392
M (k) 29 / 82 55 / 78 76 / 97 145 / 270 265 / 2,181 5 / 97
L(k) 9,187 / 2,824 21,579 / 41,584 / 233,666 / 2,243,180 /

24,970 48,922 197,214 1,454,254
8 M (k) ∩ L(k) 7,981 / 1,207 21,215 / 43,074 / 236,664 / 2,243,180 / – –

8,524 28,967 233,901 24,525
M (k) 57 / 164 116 / 211 176 / 312 356 /1,800 656 / 22,498
L(k) 12,891 / 8,165 30,325 / 58,596 / 326,177 / 2,994,538 /

61,564 106,293 359,597 2,666,084
9 M (k) ∩ L(k) 12,891 / 27 30,325 / 58,621 / 326,177 / 2,994,538 / – –

23,771 108,520 1,726 27,819
M (k) 13 / 50 23 / 62 28 / 54 49 / 67 89 / 101

Existing quantitative conformance checking techniques include such methods as
Projected conformance checking [14], k-order Markovian abstractions [4], Escaping
edges [17], Set difference [11], Negative events [7], Anti-alignments [8], and Entropy-
based exact [21] and partial matching [19]. Several quantitative stochastic conformance

14 Anna Kalenkova and Artem Polyvyanyy

Table 4: Precision and recall values.
Event prec(k,k) / recall (k,k)

log k = 0 k = 1 k = 2 k = 5 k = 10 k = 20 k =∞

1 0.147 / 1.000 0.194 / 1.000 0.241 / 1.000 0.386 / 1.000 0.547 / 1.000 0.650 / 1.000 0.709 / 1.000
2 0.918 / 0.797 0.981 / 0.856 0.990 / 0.918 0.959 / 0.997 0.946 / 1.000 0.961 / 1.000 0.960 / 1.000
3 0.903 / 1.000 0.950 / 1.000 0.955 / 1.000 0.974 / 1.000 0.980 / 1.000 0.980 / 1.000 0.980 / 1.000
4 0.575 / 0.824 0.679 / 0.952 0.763 / 0.988 0.936 / 1.000 0.973 / 1.000 – 0.995 / 1.000
5 0.025 / 1.000 0.034 / 1.000 0.046 / 1.000 0.087 / 1.000 0.145 / 1.000 – –
6 0.016 / 0.991 0.023 / 0.979 0.031 / 0.877 0.072 / 0.830 0.791 / 1.000 – –
7 0.030 / 1.000 0.043 / 1.000 0.057 / 1.000 0.095 / 1.000 0.137 / 1.000 – 0.393 / 1.000
8 0.027 / 1.000 0.037 / 1.000 0.048 / 1.000 0.090 / 1.000 0.135 / 1.000 – –
9 0.020 / 1.000 0.025 / 0.861 0.032 / 0.386 0.083 / 1.000 0.859 / 1.000 – –

checking approaches have been recently proposed [16,15,20]; these account for the
relative likelihoods of traces described in models and recorded in logs. Finally, methods
that combine quantitative and qualitative conformance checking techniques visualize
the conformance diagnostics over the process model and are based on alignment, token
replay, or footprint matrices, refer to [3], [22], and [2], respectively.

In [23], the authors propose various properties that precision and recall measures
need to fulfill. Among precision and recall measures [3,14,8,17,11,7,2,24,21,22] being
analyzed in [23], only the entropy-based exact matching [21] fulfills all the formal prop-
erties. The entropy-based exact and partial matching techniques were also compared to
other conformance checking techniques [4,3,14,8,17,11,7] during a qualitative analysis
provided in [19]. As demonstrated in [19], the entropy-based methods [21,19] prove
their applicability to accurately rank models by their precision values in accordance
with the share of behavior not present in the analyzed event log. Although the existing
entropy-based measures have advantages over other conformance checking techniques,
they present two different extreme measures. The exact entropy-based matching tech-
nique is too restrictive, while the partial entropy-based technique substantially extends
the log and the model behaviors prior to the comparison. This paper presents an ap-
proach that gradually balances between these two different measures.

7 Conclusion and Future Work
This paper proposes a spectrum of conformance measurements for finding deviations
between designed and observed processes. The new conformance values inherit proper-
ties of the recently proposed entropy-based techniques and provide flexible control over
the sensitivity for identifying differences in the compared processes. We prove that with
the new conformance measures, one can smoothly balance between the two existing
extreme entropy-based techniques. Additionally, we analyzed the new methods’ perfor-
mance characteristics and showed their scalability for analyzing real-world event data.
In future work, we plan to extend the techniques by providing qualitative information
on differences between designed and observed processes, including the identification
and visualization of deviations.

Acknowledgments. This work was in part supported by the Australian Research Coun-
cil project DP180102839.

A Spectrum of Entropy-Based Precision and Recall Measurements 15

References
1. van der Aalst, W.: Service mining: Using process mining to discover, check, and improve

service behavior. IEEE Transactions on Services Computing 6(4), 525–535 (2013)
2. van der Aalst, W.: Process Mining: Data Science in Action. Springer (2016)
3. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B., van der Aalst, W.: Measur-

ing precision of modeled behavior. Inf. Syst. and e-Business Managem. 13(1), 37–67 (2015)
4. Augusto, A., Armas-Cervantes, A., Conforti, R., Dumas, M., La Rosa, M., Reissner, D.:

Abstract-and-compare: A family of scalable precision measures for automated process dis-
covery. In: Business Process Management. pp. 158–175. Springer, Cham (2018)

5. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking—Relating
Processes and Models. Springer (2018)

6. Ceccherini-Silberstein, T., Machı̀, A., Scarabotti, F.: On the entropy of regular languages.
Theor. Comp. Sci. 307, 93–102 (2003)

7. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A robust F-measure for evaluating
discovered process models. In: CIDM. pp. 148–155. IEEE (2011)

8. van Dongen, B., Carmona, J., Chatain, T.: A unified approach for measuring precision and
generalization based on anti-alignments. In: BPM. pp. 39–56. Springer, Cham (2016)

9. van Dongen, B., de Medeiros, A., Verbeek, H., Weijters, A., van der Aalst, W.: The ProM
Framework: A new era in process mining tool support. In: ATPN. pp. 444–454 (2015)

10. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
PTR, USA (2005)

11. Greco, G., Guzzo, A., Pontieri, L., Sacca, D.: Discovering expressive process models by
clustering log traces. IEEE Trans. on Knowl. and Data Eng. 18(8), 1010–1027 (2006)

12. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages, and
Computation, 3rd Edition. Pearson International Edition, Addison-Wesley (2007)

13. Leemans, S., Fahland, D., van der Aalst, W.: Discovering Block-Structured Process Models
from Incomplete Event Logs. In: ATPN, LNCS, vol. 8489, pp. 91–110. Springer (2014)

14. Leemans, S., Fahland, D., van der Aalst, W.: Scalable process discovery and conformance
checking. Software & Systems Modeling 17(2), 599–631 (2018)

15. Leemans, S., Polyvyanyy, A.: Stochastic-aware conformance checking: An entropy-based
approach. In: CAiSE. LNCS, vol. 12127, pp. 217–233. Springer (2020)

16. Leemans, S., Syring, A., van der Aalst, W.: Earth movers’ stochastic conformance checking.
In: BPM Forum. LNBIP, vol. 360, pp. 127–143. Springer (2019)

17. Muñoz-Gama, J., Carmona, J.: A fresh look at precision in process conformance. In: Busi-
ness Process Management. pp. 211–226. Springer, Berlin, Heidelberg (2010)

18. Polyvyanyy, A., Alkhammash, H., Di Ciccio, C., Garcı́a-Bañuelos, Kalenkova, A., Leemans,
S., Mendling, J., Moffat, A., Weidlich, M.: Entropia: A Family of Entropy-Based Confor-
mance Checking Measures for Process Mining. In: CoRR. vol. abs/2008.09558 (2020)

19. Polyvyanyy, A., Kalenkova, A.: Monotone conformance checking for partially matching de-
signed and observed processes. In: ICPM. pp. 81–88. IEEE (2019)

20. Polyvyanyy, A., Moffat, A., Garcı́a-Bañuelos, L.: An entropic relevance measure for stochas-
tic conformance checking in process mining. In: ICPM. IEEE (2020), In Press

21. Polyvyanyy, A., Solti, A., Weidlich, M., Di Ciccio, C., Mendling, J.: Monotone precision
and recall measures for comparing executions and specifications of dynamic systems. ACM
Trans. Softw. Eng. Methodol. 29(3) (Jun 2020)

22. Rozinat, A., van der Aalst, W.: Conformance checking of processes based on monitoring real
behavior. Information Systems 33(1), 64–95 (2008)

23. Syring, A., Tax, N., van der Aalst, W.: Evaluating conformance measures in process mining
using conformance propositions. In: ToPNoC XIV. pp. 192–221. Springer (2019)

24. Weijters, A., van der Aalst, W., Alves De Medeiros, A.: Process mining with the heuristics
miner algorithm. Tech. rep., TU/e, Eindhoven (2006)

	A Spectrum of Entropy-Based Precision and Recall Measurements Between Partially Matching Designed and Observed Processes
	Introduction
	Motivating Example
	Basic Notions
	Sequences, Languages, and Event Logs
	Finite Automata
	Topological Entropy

	Comparing Designed and Observed Processes
	Existing Entropy-Based Conformance Checking Techniques
	k-Skips Conformance Checking
	Formal Properties

	Evaluation
	Related Work
	Conclusion and Future Work

